287 research outputs found

    Secure and efficient decoy-state quantum key distribution with inexact pulse intensities

    Full text link
    We present a general theorem for the efficient verification of the lower bound of single-photon transmittance. We show how to do decoy-state quantum key distribution efficiently with large random errors in the intensity control. In our protocol, the linear terms of fluctuation disappear and only the quadratic terms take effect. We then show the unconditional security of decoy-state method with whatever error pattern in intensities of decoy pulses and signal pulses provided that the intensity of each decoy pulse is less than μ\mu and the intensity of each signal pulse is larger than μ\mu'

    Experimental observation of four-photon entanglement from down-conversion

    Get PDF
    We observe polarization-entanglement between four photons produced from a single down-conversion source. The non-classical correlations between the measurement results violate a generalized Bell inequality for four qubits. The characteristic properties and its easy generation with high interferometric contrast make the observed four-photon state well-suited for implementing advanced quantum communication schemes such as multi-party quantum key distribution, secret sharing and telecloning.Comment: 4 pages, 3 figure

    Measurable nonlocal effect of bipartite system during a local cyclic evolution of its subsystem

    Full text link
    In this letter, a nonlocal effect for a bipartite system which is induced by a local cyclic evolution of one of its subsystem is suggested. This effect vanishes when the system is at a disentangled pure state but can be observed for some disentangled mixed states. As a paradigm, we study the effect for the system of two qubits in detail. It is interesting that the effect is directly related to the degree of entanglement for pure state of qubit pairs. Furthermore, we suggest a Bell-type experiment to measure this nonlocal effect for qubit pairs.Comment: 5 pages, 2 figure

    Quantum dense coding over Bloch channels

    Full text link
    Dynamics of coded information over Bloch channels is investigated for different values of the channel's parameters. We show that, the suppressing of the travelling coded information over Bloch channel can be increased by decreasing the equilibrium absolute value of information carrier and consequently decreasing the distilled information by eavesdropper. The amount of decoded information can be improved by increasing the equilibrium values of the two qubits and decreasing the ratio between longitudinal and transverse relaxation times. The robustness of coded information in maximum and partial entangled states is discussed. It is shown that the maximum entangled states are more robust than the partial entangled state over this type of channels

    On the efficiency of quantum lithography

    Full text link
    Quantum lithography promises, in principle, unlimited feature resolution, independent of wavelength. However, in the literature at least two different theoretical descriptions of quantum lithography exist. They differ in to which extent they predict that the photons retain spatial correlation from generation to the absorption, and while both predict the same feature size, they differ vastly in predicting how efficiently a quantum lithographic pattern can be exposed. Until recently, essentially all experiments reported have been performed in such a way that it is difficult to distinguish between the two theoretical explanations. However, last year an experiment was performed which gives different outcomes for the two theories. We comment on the experiment and show that the model that fits the data unfortunately indicates that the trade-off between resolution and efficiency in quantum lithography is very unfavourable.Comment: 19 pages, extended version including a thorough mathematical derivatio

    Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack

    Get PDF
    Quantum key distribution can be performed with practical signal sources such as weak coherent pulses. One example of such a scheme is the Bennett-Brassard protocol that can be implemented via polarization of the signals, or equivalent signals. It turns out that the most powerful tool at the disposition of an eavesdropper is the photon-number splitting attack. We show that this attack can be extended in the relevant parameter regime such as to preserve the Poissonian photon number distribution of the combination of the signal source and the lossy channel.Comment: 4 page

    Experimental demonstration of four-party quantum secret sharing

    Get PDF
    Secret sharing is a multiparty cryptographic task in which some secret information is splitted into several pieces which are distributed among the participants such that only an authorized set of participants can reconstruct the original secret. Similar to quantum key distribution, in quantum secret sharing, the secrecy of the shared information relies not on computational assumptions, but on laws of quantum physics. Here, we present an experimental demonstration of four-party quantum secret sharing via the resource of four-photon entanglement

    Decoy State Quantum Key Distribution With Modified Coherent State

    Full text link
    To beat PNS attack, decoy state quantum key distribution (QKD) based on coherent state has been studied widely. We present a decoy state QKD protocol with modified coherent state (MCS). By destruction quantum interference, MCS with fewer multi-photon events can be get, which may improve key bit rate and security distance of QKD. Through numerical simulation, we show about 2-dB increment on security distance for BB84 protocol.Comment: 4 pages, 4 figure
    corecore